Skip to main content

LOOKING FOR SOMETHING?

Safety Signs and Sign Policy

Written by Jim Vaughn, CUSP on . Posted in .

You might be surprised how a little thing like a safety sign can turn out to be one of your company’s biggest financial losses of the year. Over the last decade, I’m aware of three clients who lost big because a sign they put up was the wrong color, the print was imprecise, or the employer didn’t have a sign policy or effective safety sign training.

Let’s start with having a sign policy. When helping to develop any policy, I always tell clients that the policy you write is only as good as the training you provide when you roll it out. For instance, if I were to research signs in preparation for a sign policy, I would likely start with the ANSI Z535 safety sign standard. That is where you find the results of the research and testing performed by industry on how to compose and employ effective safety signs. Having done all the research, you establish a procedure and policy that ensure signs are effective. Your new policy enhances worker safety and the safety of the public, and it protects the employer. There is only one very big problem: Your sign program will not be effective if the workforce that uses the signs, the facilitator who provides the signs, and the employees who install or maintain the signs don’t understand sign color, size, print and placement. This is especially true over time when the signs become worn, illegible or damaged, or if they need to be replaced or moved.

If you aren’t already convinced, you are probably now asking, why do employees need to know about safety signs? There are a number of reasons and all of them are lab tested. Agencies like OSHA and MSHA know through experience that safety signs prevent incidents when they are part of a system of safety. Placing signs is only part of the job. A good safety program consists of several elements that link together to establish a safety culture. Employees who are trained on the purpose and function of safety signs are more likely to see and adhere to them. Training employees on the value and construction of signs gives them some ownership and awareness that signs are important and are not only to be followed but are to be maintained in a functional condition. Training on safety signs is not an all-day enterprise. But that short training makes the safety signs a tool in facilities safety when employees understand why they work and what they mean. Signs that an employer places in the environment are there to protect the public from hazards associated with the employer’s facilities. These are the signs warning of lakes, ditches, driveways, alligators, hidden drives, speed limits, trucks entering/exiting, energized equipment, radio-frequency energy and slow-moving vehicles.

The ANSI sign standards are tested to determine the effects on observers of viewing the signage and warning symbols. Those effective sign constructs are then categorized and standardized to keep signs consistent. When workers and the public see a safety sign, they are conditioned to react to the color and graphics. By “conditioned,” I mean that consistency in color, graphics and shape is immediately recognized as a warning because signs are consistent. The Manual on Uniform Traffic Control Devices provides the same consistency, so much so that no one really reads a stop sign. The size, shape and color automatically result in the driver slowing to a stop. This cognitive act was made clear a few years ago when an artist thought stop signs were boring, so he replaced numerous standard stop signs with artistic versions using different colors and graphics. The result was a flood of traffic accidents and jail for the artist who foolishly signed his artwork.

The ANSI safety sign standard specifies that a sign must have three panels bordered within the sign. The three components of effective signage are the signal word panel, the message panel and the symbol panel. The signal word is one word, such as “DANGER,” “WARNING” or “CAUTION.” The message is short, concise and describes the hazard, such as “High Voltage” or “Poison” or “Wild Animals.” The symbol panel is a second method to repeat the message for those who may not fully comprehend it. The symbols are researched using numerous groups of people of varying ages, levels of education, nationalities and culture groups to learn their responses to viewing the symbols. These three panels and the colored backgrounds make up the effectiveness of the sign. The colors for “DANGER” are white letters on a red background. For “WARNING,” they’re black letters on an orange background. “CAUTION” uses black letters on a yellow background, while “NOTICE” uses italicized white letters on a blue background. “SAFETY INSTRUCTIONS” are white letters on a green background.

The placement of signs is elective based on avenues of approach to the hazard and angles of view. Signs should be placed within view of an approaching person so that they can see the sign and react in time to avoid the hazard. Inside a facility where employees are trained to recognize signs, placement is simplified. Out in the public environment, unlike with the MUTCD, the size, number and location of signs are not specified. The owner must make an evaluation and consider the nature of the passing public and the level of hazard to decide where and how many signs are appropriate, keeping in mind that approaching persons must be able to see and react to the sign’s message in time to avoid the hazard.

Real-Life Examples
In the introduction to this article, I mentioned the cost of poor environmental signage. Here are a couple of real instances where the true value of safety signs was overlooked.

Case 1
A utility built a substation. The fence around the substation was 7 feet high with three strands of barbed wire at the top. The fence was also a minimum of 18 feet from the nearest structure in the substation. Outside the substation, a hedge ran parallel along the substation’s rear fence. The hedge was about 10 feet high and 12 feet from the fence. When the fence was erected, the crew installed “HIGH VOLTAGE” red-and-white warning signs every 30 feet along the 240-foot-long fence. About four months later, a local man with a history of burglary and theft convictions laid a wooden ladder against the barbed wire and easily scaled the fence. A short time later, while cutting the 4/0 ground from the substation power transformer, he got in series with a ground current and was electrocuted. A substation maintenance crew member found his body. According to the coroner, he had been in the substation three days.

Within 72 hours, the utility received a notice of claim and a negligence injury lawsuit based on the standards of care established in Section 11 of the National Electrical Safety Code and the codes referenced therein (the American National Standard for Environmental and Facility Safety Signs, ANSI Z535.1, .2, .3, .4 and .5). The suit was successful and hinged on one brief paragraph found in ANSI safety sign standard 8.2.2, “Determination of Safe Viewing Distance,” which reads, “Determination of safe viewing distance for the message panel text shall take into consideration a reasonable hazard avoidance reaction time.” It was argued by the utility that the ANSI standard only applied to workers. The jury disagreed – and they were right. The plaintiff’s case clearly showed that the ladder the victim used was placed almost equidistant between the two closest signs. The plaintiff also demonstrated that when emerging from the hedge used to conceal his unlawful entry for a criminal purpose, the local man could not see the face of the signs. That single argument was enough to result in a multimillion-dollar award to the family of the deceased.

This raises the question for the utility: Would training on sign placement and purpose have triggered a change in company policy? If the sign installers had recognized the placement issue, would the signs have been placed at 8-foot intervals and would that have prevented the incident? No one can argue intent or assumptions on the part of the deceased in this event. What is clearly true is that sign placement did not meet the intent of the standard of care.

Case 2
A highway engineering and construction firm leased an empty 3-acre lot as a base of operations. Highway equipment and materials were stored there. Residential housing was across the street from the lot. A neighborhood market down the street next to the construction lot was across the street from a residential street entrance.

One morning, an improperly loaded material truck caught the system neutral of a single-phase line that crossed the construction lot entrance. The impact broke the #4 copper primary, which fell clear of the neutral, landing on the crushed granite cover in the construction lot. The road crews said the wire was smoking some at first but then stopped. They decided to put up a sign. They used a 4×8 sheet of 5/8 plywood against a sawhorse. In orange fluorescent marking paint, they sprayed this warning on the plywood: “Don’t Touch the Wire.” They proceeded to return to their work area some 100 yards away and then called the power company to report the downed wire.

Fewer than 15 minutes later, a pedestrian from the residential area crossed the street into the construction lot, walking toward the market. She stepped on the downed wire and was electrocuted just as the utility troubleman was pulling up to the location. One of the two-man crew cut the wire with hot cutters and rubber gloves while the second began CPR on the pedestrian. The first man drove to the fuse and pulled it. Despite their efforts, the victim did not survive.

The family of the deceased sued the engineering firm and won. The ANSI sign standard was the basis of their negligence claim. The plaintiff agreed that the workers sought to minimize risk to the public. The plaintiff’s claim also showed that the sign was noncompliant with the ANSI standard in size, shape, color and message and thus could not be recognized by the victim. It was purely an accident that the wire was brought down, but the crew recognized there was a remaining hazard. That is why they put up the sign. Their efforts were honorable but fell short of the standard of care established by the ANSI standard. The crew should have stood by to warn approaching members of the public of the hazard, but instead they chose to erect a warning. That made sense to them because they knew the nature of the hazard. The message made sense to them because they clearly knew of the presence of the wire. The color made sense to them because that is the color that they use to write warnings on the ground where underground obstructions are known to exist. But the pedestrian had no foreknowledge or experience that would have caused her to recognize the hazard expressed by the crew member’s sign.

The ANSI sign standard shows that colors, hazard symbols and warning messages have a repeatable and predictive effect, informing observers that a hazard is present. Of course, such a sign was not available in this case, and a compliant sign could not have been constructed by the highway workers. However, basic knowledge of the function and purpose of signs should have compelled the workers to know their plywood composition was not effective or compliant when such a life-threatening hazard was present. A trained worker would have immediately rejected the crew-made sign idea and posted observers to keep the area clear.

Conclusion
By the way, remember the old white “DANGER” sign in a red oval on a black background? When research showed the value of the three-panel design in 1991, the new design was presented. The ANSI standard explained the rejection of the old red oval but allowed its use to provide time for the conversion. In 1998, the oval sign was removed from the standard and no longer considered compliant. You can still buy them even though they were removed from the ANSI standard. However, again, installing red-oval “DANGER” signs is no longer considered compliant. The bottom line here is that if you are a safety person and/or a policy writer, you need to know these consensus standards and employ their guidance in your own safety programs – both to better protect your workers and to protect your employer.

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn, CUSP, has devoted the last 24 years to safety and training. A noted author, trainer and lecturer, he is a senior consultant for the Institute for Safety in Powerline Construction. He can be reached at [email protected].